JETIR.ORG

ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

ON DECOMPOSITIONS OF NEW TYPES OF @ (1,2)*-CONTINUOUS MAPS IN BITOPOLOGICAL SPACES

C. SHANMUGA VADIVU1 AND M. MOHAMED SHERIFF2

¹Assistant Professor and Head, PG and Research Department of Mathematics, Sethupathy Govt. Arts College, Ramanathapuram-623 502, Tamilnadu, India.

E-mail: nasha11080@gmail.com

²Associate Professor and Head, Department of Mathematics, H.K.R.H. College, Uthamapalayam, Tamilnadu, India.

E-mail: sheriffhodmaths@gmail.com

Abstract: In this paper, we first introduce $\tilde{g}(1,2)^*$ -continuous maps and study their relations with various generalized $(1,2)^*$ -continuous maps. We also discuss some decompositions of $\tilde{g}(1,2)^*$ -continuous maps.

Key words and Phrases: $\widetilde{g}(1,2)^*$ -open set, $\widetilde{g}(1,2)^*$ -continuous maps, $T\widetilde{g}_{(1,2)^*}$ -space.

1.INTRODUCTION

Kelly [6] introduced the concepts of bitopological spaces. Recently Sheik John [18] introduced and studied another form of generalized continuous maps called ω -continuous maps respectively. Levine [7], introduced the generalized closed sets in topology. Abd El-Monsef and et al. [1], introduced the β-open sets and β-continuous mapping, Andrijevic [2], introduced semi-preopen sets. Arya and et al. [3], introduced the characterization of s-normal spaces. Bhattacharya [4], introduced semi-generalized closed sets in topology. Duszynski [5], introduced a new generalization of closed sets in bitopology. Rajamani and et al. [9], introduced on αgs-closed sets in topological spaces. Ravi and et al. [13], on stronger forms of (1,2)*-quotient mappings in bitopological spaces.

In this paper, we first introduce $\tilde{g}(1,2)^*$ -continuous maps and study their relations with various generalized $(1,2)^*$ -continuous maps. We also discuss some decompositions of $\tilde{g}(1,2)^*$ -continuous maps.

2.PRELIMINARIES

Throughout this paper, (X, τ_1, τ_2) (briefly, X) will denote bitopological space (briefly, BTPS).

Definition 2.1 Let H be a subset of X. Then H is said to be $\tau_{1,2}$ -open [11] if $H = P \cup Q$ where $P \in \tau_1$ and $Q \in \tau_2$.

The complement of $\tau_{1,2}$ -open set is called $\tau_{1,2}$ -closed.

Notice that $\tau_{1,2}$ -open sets need not necessarily form a topology.

Definition 2.2 [11] Let H be a subset of a bitopological space X. Then

- (i) the $\tau_{1,2}$ -closure of H, denoted by $\tau_{1,2}$ -cl(H), is defined as $\cap \{F : H \subseteq F \text{ and } F \text{ is} \quad \tau_{1,2}$ -closed $\}$.
- (ii) the $\tau_{1,2}$ -interior of H, denoted by $\tau_{1,2}$ -int(H), is defined as $\cup \{F : F \subseteq H \text{ and } F \text{ is } \tau_{1,2}\text{-open}\}$.

Definition 2.3 A subset H of a BTPS X is called:

- (i) $(1,2)^*$ -semi-open set [14] if $H \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(H));
- (ii) $(1,2)^*$ -preopen set [10] if $H \subset \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(H));
- (iii) $(1,2)^*-\alpha$ -open set [8] if $H \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(H));
- (iv) regular $(1,2)^*$ -open set [10] if $H = \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(H)).

The complements of the above-mentioned open sets are called their respective closed sets.

Definition 2.4

A map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

- (i) $(1,2)^*$ - \hat{g} -continuous [15] if $f^1(V)$ is a $(1,2)^*$ - \hat{g} -closed set of X for every $\sigma_{1,2}$ -closed set V of Y.
- (ii) $(1,2)^*$ -g-continuous [16] if $f^{-1}(V)$ is a $(1,2)^*$ -g-closed set of X for every $\sigma_{1,2}$ -closed set V of Y.
- (iii) $(1,2)^*$ - \ddot{g} -continuous [17] if $f^{-1}(V)$ is an $(1,2)^*$ - \ddot{g} -closed set of X for every $\sigma_{1,2}$ -closed set V of Y.
- (iv) (1,2)*-semi-continuous [11] if $f^{-1}(V)$ is a (1,2)*-semi-open set of X for every $\sigma_{1,2}$ -open set V of Y.
- (v) $(1,2)^*-\alpha$ -continuous [10] if $f^{-1}(V)$ is an $(1,2)^*-\alpha$ -closed set of X for every $\sigma_{1,2}$ -closed set V of Y.
- (vi) $(1,2)^*$ -continuous [11] if $f^{-1}(V)$ is a $\tau_{1,2}$ -closed set of X for every $\sigma_{1,2}$ -closed set V of Y.

3. \tilde{g} (1,2)*-CONTINUOUS MAPS

We introduce the following definitions:

Definition 3.1

- (i) A map $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called a $\tilde{g}(1,2)^*$ -continuous if the inverse image of every $\sigma_{1,2}$ -closed set in Y is $\tilde{g}(1,2)^*$ -closed set in X.
- (ii) A bitopological space X is called a T $\tilde{g}_{(1,2)^*}$ -space if every $\tilde{g}_{(1,2)^*}$ -closed subset of X is $\tau_{1,2}$ -closed in X.

Example 3.2

- (i) Let $X = Y = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{c\}\}$ and $\tau_2 = \{\phi, X, \{a, c\}\}$. Then the sets in $\{\phi, X, \{c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{b\}, \{a, b\}\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{b\}\}\}$ and $\sigma_2 = \{\phi, Y, \{a, b\}\}$. Then the sets in $\{\phi, Y, \{b\}, \{a, b\}\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{c\}, \{a, c\}\}\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^*$ - \ddot{G} $C(X) = \{\phi, \{b\}, \{a, b\}, X\}$. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity map. Then f is $(1,2)^*$ - \ddot{g} -continuous.
- (ii) Let $X = Y = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$, $\sigma_1 = \{\phi, Y, \{a\}\}$ and $\sigma_2 = \{\phi, Y, \{b, c\}\}$. Then the identity function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $\tilde{g}(1,2)^*$ -continuous.

Proposition 3.3

A map $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $\widetilde{g}(1,2)^*$ -continuous if and only if $f^1(U)$ is $\widetilde{g}(1,2)^*$ -open in X for every $\sigma_{1,2}$ -open set U in Y.

Proof

Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be $\tilde{g}(1,2)^*$ -continuous and U be an $\sigma_{1,2}$ -open set in Y. Then U^c is $\sigma_{1,2}$ -closed in Y and since f is $\tilde{g}(1,2)^*$ -continuous, $f^{-1}(U^c)$ is $\tilde{g}(1,2)^*$ -closed in X. But $f^{-1}(U^c) = (f^{-1}(U))^c$ and so $f^{-1}(U)$ is $\tilde{g}(1,2)^*$ -open in X.

Conversely, assume that $f^{-1}(U)$ is $\tilde{g}(1,2)^*$ -open in X for each $\sigma_{1,2}$ -open set U in Y. Let F be a $\sigma_{1,2}$ -closed set in Y. Then F^c is $\sigma_{1,2}$ -open in Y and by assumption, $f^{-1}(F^c)$ is $\tilde{g}(1,2)^*$ -open in X. Since $f^{-1}(F^c) = (f^{-1}(F))^c$, we have $f^{-1}(F)$ is $\tilde{g}(1,2)^*$ -closed in X and so f is $\tilde{g}(1,2)^*$ -continuous.

Remark 3.4

The composition of two \tilde{g} (1,2)*-continuous maps need not be \tilde{g} (1,2)*-continuous and this is shown by the following example.

Example 3.5

Let $X = Y = Z = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{b, c\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a\}, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{a, b\}\}$ and $\sigma_2 = \{\phi, Y\}$. Then the sets in $\{\phi, Y, \{a, b\}\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{c\}\}\}$ are called $\sigma_{1,2}$ -closed. Let $\eta_1 = \{\phi, Z, \{b\}\}\}$ and $\eta_2 = \{\phi, Z, \{a, b\}\}\}$. Then the sets in $\{\phi, Z, \{b\}, \{a, b\}\}\}$ are called $\eta_{1,2}$ -open and the sets in $\{\phi, Z, \{c\}, \{a, c\}\}\}$ are called $\eta_{1,2}$ -closed. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)$ be the identity maps. Then f and g are \widetilde{g} $(1,2)^*$ -continuous but their g of $f: (X, \tau_1, \tau_2) \to (Z, \eta_1, \eta_2)$ is not \widetilde{g} $(1,2)^*$ -continuous, because $V = \{a, c\}$ is $\eta_{1,2}$ -closed in Z but (g of $f)^{-1}(V) = f^{-1}(g^{-1}(V)) = f^{-1}(g^{-1}(\{a, c\})) = f^{-1}(\{a, c\}) = \{a, c\}$, which is not \widetilde{g} $(1,2)^*$ -closed in X.

Proposition 3.6

Let (X, τ_1, τ_2) and (Z, η_1, η_2) be two bitopological spaces and (Y, σ_1, σ_2) be a T $\tilde{g}_{(1,2)^*}$ -space. Then the composition g o f: $(X, \tau_1, \tau_2) \to (Z, \eta_1, \eta_2)$ of the $\tilde{g}(1,2)^*$ -continuous maps f: $(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ and g: $(Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)$ is $\tilde{g}(1,2)^*$ -continuous.

Proof

Let F be any $\eta_{1,2}$ -closed set of (Z, η_1 , η_2). Then $g^{-1}(F)$ is $\widetilde{g}(1,2)^*$ -closed in (Y, σ_1 , σ_2), since g is $\widetilde{g}(1,2)^*$ -continuous. Since Y is a T $\widetilde{g}_{(1,2)^*}$ -space, $g^{-1}(F)$ is $\sigma_{1,2}$ -closed in Y. Since f is $\widetilde{g}(1,2)^*$ -continuous, $f^{-1}(g^{-1}(F))$ is $\widetilde{g}(1,2)^*$ -closed in X. But $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ and so g o f is $\widetilde{g}(1,2)^*$ -continuous.

Proposition 3.7

If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $\widetilde{g}(1,2)^*$ -continuous and $g: (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)$ is $(1,2)^*$ -continuous, then their composition $g \circ f: (X, \tau_1, \tau_2) \to (Z, \eta_1, \eta_2)$ is $\widetilde{g}(1,2)^*$ -continuous.

Proof

Let F be any $\eta_{1,2}$ -closed set in (Z, η_1, η_2) . Since $g: (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)$ is $(1,2)^*$ -continuous, $g^{-1}(F)$ is $\sigma_{1,2}$ -closed in (Y, σ_1, σ_2) . Since $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $\widetilde{g}(1,2)^*$ -continuous, $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ is $\widetilde{g}(1,2)^*$ -closed in X and so $g \circ f$ is $\widetilde{g}(1,2)^*$ -continuous.

Proposition 3.8

If A is $\tilde{g}(1,2)^*$ -closed in X and if $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ - \hat{g} -irresolute and $(1,2)^*$ - α -closed, then f(A) is $\tilde{g}(1,2)^*$ -closed in Y.

Proof

Let U be any $(1,2)^*$ - \hat{g} -open in Y such that $f(A) \subseteq U$. Then $A \subseteq f^{-1}(U)$ and by hypothesis, $(1,2)^*$ - $\alpha cl(A) \subseteq f^{-1}(U)$. Thus $f((1,2)^*$ - $\alpha cl(A)) \subseteq U$ and $f((1,2)^*$ - $\alpha cl(A))$ is a $(1,2)^*$ - α -closed set. Now, $(1,2)^*$ - $\alpha cl(f(A)) \subseteq (1,2)^*$ - $\alpha cl(f((1,2)^*$ - $\alpha cl(A))) = f((1,2)^*$ - $\alpha cl(A)) \subseteq U$. That is $(1,2)^*$ - $\alpha cl(f(A)) \subseteq U$ and so f(A) is \tilde{g} $(1,2)^*$ -closed.

Theorem 3.9

Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a pre- $(1,2)^*$ - \hat{g} -closed and $(1,2)^*$ -open bijection and if X is a T \tilde{g} $(1,2)^*$ -space, then Y is also a T \tilde{g} $(1,2)^*$ -space.

Proof

Let $y \in Y$. Since f is bijective, y = f(x) for some $x \in X$. Since X is a T $\tilde{g}_{(1,2)^*}$ -space, $\{x\}$ is $(1,2)^*$ - \hat{g} -closed or $\tau_{1,2}$ -open. If $\{x\}$ is $(1,2)^*$ - \hat{g} -closed then $\{y\} = f(\{x\})$ is $(1,2)^*$ - \hat{g} -closed, since f is pre- $(1,2)^*$ - \hat{g} -closed. Also $\{y\}$ is $\sigma_{1,2}$ -open if $\{x\}$ is $\tau_{1,2}$ -open since f is $(1,2)^*$ -open. Therefore Y is a T $\tilde{g}_{(1,2)^*}$ -space.

Theorem 3.10

If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $\tilde{g}(1,2)^*$ -continuous and pre- $(1,2)^*$ - \hat{g} -closed and if A is an $\tilde{g}(1,2)^*$ -open (or $\tilde{g}(1,2)^*$ -closed) subset of Y, then $f^{-1}(A)$ is $\tilde{g}(1,2)^*$ -open (or $\tilde{g}(1,2)^*$ -closed) in X.

Proof

Let A be an \widetilde{g} (1,2)*-open set in Y and F be any (1,2)*- \widehat{g} -closed set in X such that $F \subseteq f^1(A)$. Then $f(F) \subseteq A$. By hypothesis, f(F) is (1,2)*- \widehat{g} -closed and A is \widetilde{g} (1,2)*-open in Y. Therefore, $f(F) \subseteq (1,2)$ *- α -int(A) and so $F \subseteq f^1((1,2)$ *- α -int(A)). Since f is \widetilde{g} (1,2)-continuous and $\sigma_{1,2}$ -int(A) is $\sigma_{1,2}$ -open in Y, $f^1(\sigma_{1,2}$ -int(A)) is \widetilde{g} (1,2)*-open in X. Thus $F \subseteq (1,2)$ *- α -int($f^1(\sigma_{1,2}$ -int(A))) $\subseteq (1,2)$ *- α -int($f^1(A)$). That is $F \subseteq (1,2)$ *- α -int($f^1(A)$) and $f^1(A)$ is \widetilde{g} (1,2)*-open in X. By taking complements, we can show that if A is \widetilde{g} (1,2)*-closed in Y, $f^1(A)$ is \widetilde{g} (1,2)*-closed in X.

Corollary 3.11

Let (X, τ_1, τ_2) , (Y, σ_1, σ_2) and (Z, η_1, η_2) be any three bitopological spaces. If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $\widetilde{g}(1,2)^*$ -continuous and pre- $(1,2)^*$ - \widehat{g} -closed and $g: (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)$ is $\widetilde{g}(1,2)^*$ -continuous, then their composition $g \circ f: (X, \tau_1, \tau_2) \to (Z, \eta_1, \eta_2)$ is $\widetilde{g}(1,2)^*$ -continuous.

Proof

Let F be any $\eta_{1,2}$ -closed set in (Z, η_1, η_2) . Since $g: (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)$ is $\tilde{g}(1,2)^*$ -continuous, $g^{-1}(F)$ is $\tilde{g}(1,2)^*$ -closed in Y. Since $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $\tilde{g}(1,2)^*$ -continuous and pre- $(1,2)^*$ - \hat{g} -closed, then $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ is $\tilde{g}(1,2)^*$ -closed in X and so g o f is $\tilde{g}(1,2)^*$ -continuous.

Definition 3.12

Let x be a point of X and A be a subset of a bitopological space X. Then A is called an $\tilde{g}(1,2)^*$ -neighbourhood of x (briefly, $\tilde{g}(1,2)^*$ -nbhd of x) in X if there exists an $\tilde{g}(1,2)^*$ -open set U of X such that $x \in U \subset A$.

Proposition 3.13

Let A be a subset of a bitopological space X. Then $x \in \tilde{g}(1,2)^*$ -cl(A) if and only if for any $\tilde{g}(1,2)^*$ -nbhd G_x of x in X, $A \cap G_x \neq \emptyset$.

Proof

Necessity. Assume $x \in \widetilde{g}(1,2)^*$ -cl(A). Suppose that there is an $\widetilde{g}(1,2)^*$ -nbhd G of the point x in X such that $G \cap A = \emptyset$. Since G is $\widetilde{g}(1,2)^*$ -nbhd of x in X, by Definition 3.12, there exists an $\widetilde{g}(1,2)^*$ -open set U_x such that $x \in U_x \subseteq G$. Therefore, we have $U_x \cap A = \emptyset$ and so $A \subseteq (U_x)^c$. Since $(U_x)^c$ is an $\widetilde{g}(1,2)^*$ -

closed set containing A, we have $\tilde{g}(1,2)^*$ -cl(A) $\subseteq (U_x)^c$ and therefore $x \notin \tilde{g}(1,2)^*$ -cl(A), which is a contradiction.

Sufficiency. Assume for each $\ \widetilde{g}$ (1,2)*-nbhd G_x of x in X, $A \cap G_x \neq \emptyset$. Suppose $x \notin \widetilde{g}$ (1,2)*-cl(A). Then, there exists a $\ \widetilde{g}$ (1,2)*-closed set F of X such that $A \subseteq F$ and $x \notin F$. Thus $x \in F^c$ and F^c is $\ \widetilde{g}$ (1,2)*-open in X and hence F^c is a $\ \widetilde{g}$ (1,2)*-nbhd of x in X. But $A \cap F^c = \emptyset$, which is a contradiction.

In the next theorem we explore certain characterizations of $\tilde{g}(1,2)^*$ -continuous functions.

Theorem 3.14

Suppose the collection of all $\tilde{g}(1,2)^*$ -open sets of X is closed under arbitrary unions. Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a map from a bitopological space (X, τ_1, τ_2) into a bitopological space (Y, σ_1, σ_2) . Then the following statements are equivalent.

- (i) The function f is $\tilde{g}(1,2)^*$ -continuous.
- (ii) The inverse of each $\sigma_{1,2}$ -open set is $\tilde{g}(1,2)^*$ -open.
- (iii) For each point x in X and each $\sigma_{1,2}$ -open set V in Y with $f(x) \in V$, there is an $\tilde{g}(1,2)$ *-open set U in X such that $x \in U$, $f(U) \subseteq V$.
- (iv) The inverse of each $\sigma_{1,2}$ -closed set is $\tilde{g}(1,2)^*$ -closed.
- (v) For each x in X, the inverse of every neighborhood of f(x) is an $\tilde{g}(1,2)^*$ -nbhd of x.
- (vi) For each x in X and each neighborhood N of f(x), there is an $\tilde{g}(1,2)^*$ -nbhd G of x such that $f(G) \subseteq N$.
- (vii) For each subset A of X, $f(\tilde{g}(1,2)^*-cl(A)) \subseteq \sigma_{1,2}-cl(f(A))$.
- (viii) For each subset B of Y, $\tilde{g}(1,2)^*$ -cl(f⁻¹(B)) \subseteq f⁻¹($\sigma_{1,2}$ -cl(B)).

Proof

- (i) \Leftrightarrow (ii). It is trivial.
- (i) \Leftrightarrow (iii). Suppose that (iii) holds and let V be an $\sigma_{1,2}$ -open set in Y and let $x \in f^1(V)$. Then $f(x) \in V$ and thus there exists an $\widetilde{g}(1,2)^*$ -open set U_x such that $x \in U_x$ and $f(U_x) \subseteq V$. Now, $x \in U_x \subseteq f^1(V)$ and $f^1(V) = \bigcup_{x \in f^1(V)} U_x$. Then $f^1(V)$ is $\widetilde{g}(1,2)^*$ -open in X and therefore f is $\widetilde{g}(1,2)^*$ -continuous.

Conversely, suppose that (i) holds and let $f(x) \in V$ where V is $\sigma_{1,2}$ -open in Y. Then $f^{-1}(V) \in (1,2)^*$ - \widetilde{G} O(X), since f is \widetilde{g} (1,2)*-continuous. Let $U = f^{-1}(V)$. Then $x \in U$ and $f(U) \subseteq V$.

- (ii) \Leftrightarrow (iv). This result follows from the fact if A is a subset of Y, then $f^{-1}(A^c) = (f^{-1}(A))^c$.
- (ii) \Rightarrow (v). For x in X, let N be a neighborhood of f(x). Then there exists an $\sigma_{1,2}$ -open set U in Y such that f(x) \in U \subseteq N. Consequently, f⁻¹(U) is an \tilde{g} (1,2)*-open set in X and x \in f⁻¹(U) \subseteq f⁻¹(N). Thus f⁻¹(N) is an \tilde{g} (1,2)*-nbhd of x.
- $(v) \Rightarrow (vi)$. Let $x \in X$ and let N be a neighborhood of f(x). Then by assumption, $G = f^{-1}(N)$ is an $\widetilde{g}(1,2)^*$ -nbhd of x and $f(G) = f(f^{-1}(N)) \subseteq N$.
- (vi) \Rightarrow (iii). For x in X, let V be an $\sigma_{1,2}$ -open set containing f(x). Then V is a neighborhood of f(x). So by assumption, there exists an \tilde{g} (1,2)*-open set U in X such that $x \in U \subseteq G$ and so $f(U) \subseteq f(G) \subseteq V$.
- (vii) \Leftrightarrow (iv). Suppose that (iv) holds and let A be a subset of X. Since $A \subseteq f^{-1}(f(A))$, we have $A \subseteq f^{-1}(\sigma_{1,2}\text{-}\operatorname{cl}(f(A)))$. Since $\sigma_{1,2}\text{-}\operatorname{cl}(f(A))$ is a $\sigma_{1,2}\text{-}\operatorname{closed}$ set in Y, by assumption $f^{-1}(\sigma_{1,2}\text{-}\operatorname{cl}(f(A)))$ is an \widetilde{g} (1,2)*-closed set containing A. Consequently, \widetilde{g} (1,2)*-cl(A) $\subseteq f^{-1}(\sigma_{1,2}\text{-}\operatorname{cl}(f(A)))$. Thus $f(\widetilde{g}(1,2)\text{-}\operatorname{cl}(A)) \subseteq f(f^{-1}(\sigma_{1,2}\text{-}\operatorname{cl}(f(A)))$ $\subseteq \sigma_{1,2}\text{-}\operatorname{cl}(f(A))$.

Conversely, suppose that (vii) holds for any subset A of X. Let F be a $\sigma_{1,2}$ -closed subset of Y. Then by assumption, $f(\tilde{g}(1,2)^*-cl(f^{-1}(F))) \subseteq \sigma_{1,2}-cl(f(f^{-1}(F))) \subseteq \sigma_{1,2}-cl(F) = F$. That is $\tilde{g}(1,2)^*-cl(f^{-1}(F)) \subseteq f^{-1}(F)$ and so $f^{-1}(F)$ is $\tilde{g}(1,2)^*-closed$.

f344

 $(vii) \Leftrightarrow (viii). \ \, \text{Suppose that } (vii) \ \, \text{holds and } B \ \, \text{be any subset of } Y. \ \, \text{Then replacing } A \ \, \text{by } f^{-1}(B) \ \, \text{in } (vii), \ \, \text{we obtain } f(\ \, \widetilde{g} \ (1,2)^*\text{-cl}(f^{-1}(B))) \subseteq \sigma_{1,2}\text{-cl}(f(f^{-1}(B))) \subseteq \sigma_{1,2}\text{-cl}(B). \ \, \text{That is } \, \widetilde{g} \ (1,2)^*\text{-cl}(f^{-1}(B)) \subseteq f^{-1}(\sigma_{1,2}\text{-cl}(B)).$

Conversely, suppose that (viii) holds. Let B = f(A) where A is a subset of X. Then we have, $\widetilde{g}(1,2)^*$ - $cl(A) \subseteq \widetilde{g}(1,2)^*$ - $cl(f^1(B)) \subseteq f^1(\sigma_{1,2}\text{-}cl(f(A)))$ and so $f(\widetilde{g}(1,2)^*\text{-}cl(A)) \subseteq \sigma_{1,2}\text{-}cl(f(A)).$ This completes the proof of the theorem.

REFERENCES

- [1] Abd El-Monsef, M. E., El-Deeb, S. N. and Mahmoud, R. A.: β-open sets and β-continuous mapping, Bull. Fac. Sci. Assiut Univ, 12(1983), 77-90.
- [2] Andrijevic, D.: Semi-preopen sets, Mat. Vesnik, 38(1986), 24-32.
- [3] Arya, S. P. and Nour, T.: Characterization of s-normal spaces, Indian J.Pure. Appl. Math., 21(8)(1990), 717-719.
- [4] Bhattacharya, P. and Lahiri, B. K.: Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987), 375-382.
- [5] Duszynski, Z., Jeyaraman, M., Joseph Israel, M. and Ravi, O.: A new generalization of closed sets in bitopology, South Asian Journal of Mathematics, 4(5)(2014), 215-224.
- [6] Kelly, J.C.: Bitopological spaces, Proc.London Math.Soc., 3(13)(1963), 71-89.
- [7] Levine, N.: Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [8] Lellis Thivagar, M., Ravi, O. and Abd El-Monsef, M. E.: Remarks on bitopological (1,2)*-quotient mappings, J. Egypt Math. Soc., 16(1) (2008), 17-25.
- [9] Rajamani, M., and Viswanathan, K.: On αgs-closed sets in topological spaces, Acta Ciencia Indica, XXXM (3) (2004), 21-25.
- [10] Ravi, O., Thivagar, M. L. and Hatir, E.: Decomposition of $(1,2)^*$ -continuity and $(1,2)^*$ - α -continuity, Miskolc Mathematical Notes., 10(2) (2009), 163-171.
- [11] Ravi, O. and Lellis Thivagar, M.: A bitopological (1,2)*-semi-generalized continuous maps, Bull. Malays. Math. Sci. Soc., (2), 29(1) (2006), 79-88.
- [12] Ravi, O. and Lellis Thivagar, M.: On stronger forms of (1,2)*-quotient mappings in bitopological spaces, Internat. J. Math. Game Theory and Algebra., 14(6) (2004), 481-492.
- [13] Ravi, O. and Thivagar, M. L.: Remarks on λ -irresolute functions via $(1,2)^*$ -sets, Advances in App. Math. Analysis, 5(1) (2010), 1-15.
- [14] Ravi, O., Pious Missier, S. and Salai Parkunan, T.: On bitopological (1,2)*-generalized homeomorphisms, Int J. Contemp. Math. Sciences., 5(11) (2010), 543-557.
- [15] Ravi, O., Pandi, A., Pious Missier, S. and Salai Parkunan, T.: Remarks on bitopological (1,2)*-rω-Homeomorphisms, International Journal of Mathematical Archive, 2(4) (2011), 465-475.
- [16] Ravi, O., Thivagar, M. L. and Jinjinli.: Remarks on extensions of (1,2)*-g-closed maps, Archimedes J. Math., 1(2) (2011), 177-187.
- [17] Ravi, O., Antony Rex Rodrigo, J., Ganesan, S. And Kumaradhas, A.: On $(1,2)^*$ \ddot{g}_{α} -continuous functions in bitopological spaces (submitted).
- [18] Sheik John, M.: A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, September 2002.